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1

by

Roger L. Berger and Dennis F. Sinlair

ABSTRACT

: “-~;> The likelihood ratio test (LRT) for hypotheses which are unions of
linear subspaces is derived for the normal theory linear model. A more
powerful variant of the LRT is proposed for the case in which the subspaces

., are not all of the same dimension. A theorem is proved which may be used

to identify hypotheses which are unions of linear subspaces. Some hypotheses,
of particular relevance in ecology, concerning the spacings between normal

! ) means are shown to be unions of linear subspaces and are therefore testable

l" /
9 using the LRT. Finally, the computation of the LRT statistic is discussed. <7
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1. Introduction.

Character displacement is an ecological process by which coexisting
species diverge in size to reduce competition (see Grant, 1972, and
Sinclair, Mosimann, and Meeter, 1982, for details). The size variable
is chosen to reflect competition between species, e.g., bill length for
birds. A typical situation is as follows. An island has been colonized
by J species within some family from the nearby mainland. If character
displacement is occurring, the species should be more dissimilar on the
island, where the variety of resources is limited, than on the mainland.
Recently, there has been much controversy in the ecological literature
concerning the existence of character displacement (Strong, Szyska, and
Simberloff, 1979; Grant and Abbott, 1980; Hendrickson, 1981; and Strong
and Simberloff, 1981). We list below four hypotheses arising in character
displacement studies. These hypotheses are all in a class for which we
derive the LRT. Tests of these hypotheses may help resol-e the controversy
surrounding character displacement.

Let the mean size measurements be denoted "ij’ i =1 (island), 2 (main-
land), j = 1, ..., J (species). Let the ordered species means on the

mainland and the island be denoted

"i(l) < “1(2) € ... 8 "i(J)’ i=1], 2.

The four character displacement hypotheses relate to these ordered means.

They are the following.

1, : -
Ho- ul(j’l) - ul(j) = ul(J’l_j) - U(J_j). J= 1, «vey [(J 1)/213

where [s] denotes the greatest integer less than or equal to s.
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where Cys -e+» C5 , BTE specified positive constants with cj = cJ-j’

j = 2. se0y J-z, aIId CJ-I = 1.

H:

0’ ul(j#l) - ul(j) = UZ(J‘...I) - uz(j)o j=1, ..., J-1.

o, 16D TG Th2Gen TPy T T L e T
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where the cj are as in Hg.

Hypothesis Hé states that the island means are arranged in a symmetric
fashion. Hypothesis Hg specifies the relative sizes of the spacings
between the means in the symmetric pattern. A commonly claimed mani-
festation of character displacement is equally spaced species sizes (Strong,
Szyska, and Simberloff, 1979) corresponding to cj 1, j=2, ..., J-1,
in Hg. Hypothesis Hg states that the corresponding spacings on the island
and the mainland are equal while the relative sizes of the spacings are
specified in HJ,

In Section 2 we derive the LRT for hypotheses which are unions of
subspaces. (Throughout this paper, ''subspace" refers to a linear subspace.)
In Section 3 we prove a theorem which may be used to identify hypothescs
with this property. We use the theorem to show that the above four hypo-
theses are unions of subspaces and thus may be tested with the LRT of

Section 2. Finally, in Section 4 we discuss how the test statistic may

be computed.
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2. Likelihood Ratio Test.

Let Xl, ooy XK denote independent normal random variables with
means El’ ooy EK and common variance cz. We assume that § = (El. eres EK)‘
lies in w, a subspace of RK of dimension J < K. For example, xl. eees xK
may be comprised of independent samples from J populations (J < K). We
will discuss testing hypotheses about g which are unions of subspaces of

w. In this section we derive the LRT of

Hy: § € w, versus HI: £ € w-u,

(2.1) o

where wy = izlwi and each wg is a Qi dimensional subspace of w.
We will show that the critical value for the LRT is a multiple of a percentile
from an F distribution. We will also describe a modification of the LRT
which has a higher power than the LRT if at least two of the wy have dif-
ferent dimensions. Throughout we assume that (2.1) has been expressed in
such a way that the w; are all distinct, that is, there do not exist i and
j,1s1i, jsm, i=j, such that w, < wg

Let the density of X = (X , xx)‘ be denoted by

URLE
2.-KX/2 X 2, 2
(2.2) P(x; £.0) = (276°) e::p(-iz (x;-£4)°/20%).
=]
m
Let 6; = {(g, 0): Eew, 0> 0}, 9 = {(5, o): Eeuw, 0> 0} = 1:191
and 0 = {(5, 0): £ € w, 0 > 0}. The LRT statistic for testing Ho is defined

seup p(x; £,9)
0
(2.3) A(x) = m&j— .
0
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If we let é denote the projection of X on w and gi denote the projection
of X on w; then A(x) is
max sup p(x; £,0)
lsism O,
MO — @ o)
e ~

sup p(x; €,9)
6, ~
lg,s‘m sgp p(x; 5.'“)

(2.4)
.5 1K/2
llx-£112

max —7
1sism| f|x-£, 1l

gz |

1%i%n "k‘éi"z]
where ||'):'|I2 = y’y. The third equality in (2.4) is a standard result from
linear models theory. The last expression in (2.4) reflects the fact that
the maximum likelihood estimate of 13 under H, is the projection of X on
the nearest subspace w,. Since ||5-_E_i||2 = ||;5_-'E:f'||2 - ||§-§i||2, rejecting

H0 if A(x) < c is equivalent to rejecting l-lo if A*(x) > c* where

min |€-£,||2
(2.5) A.(E) - 1$im ~
Izl

The value of c* which produces a size a test is given in Theorem 1.
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Theorem 1. Let F

% a.b denote the upper 100 a-percentile of an F distri-
&>

bution with a and b degrees of freedom. Let c; = (l:;:m(J-qi)Fa’J-qi.K_

The test which rejects HO if a*(X) > c; is a size a test, that is, the test

P/ K-3).

satisfies
(2.6) irp PE’G(A'(L) > c;) a2 q.
0 ~

Proof. For any § € mj and ¢ > 0,
P, SO (>et) s P, (IE-E 1%/ Ix-ElI% > e
g,0 a £.,07 012 sj X5 c

2 s 02, 2n2
< P g IEEIV/NEEN" > O-apFy g g g s/ K0

The last equality is true since a standard result from linear models theory

)
an F distribution with J-qj and K-J degrees of freedom. Thus

states that for any £ ew; and 0 > 0, [(K-J)/(J-qj)]"é‘éj"zluz-gnz has

(2.7) T?P PE,O(A'(gj > c;) < a.
0

To prove the reverse inequality, let j be such that

(J-q.)F_ . _y/(K-J) = max (J-q.)F_ /(K-J) = c*. We have
i’ a,J qj,K J 1<ism i’ a,J qi,K-J a

assumed that “j is not a subset of wy for any i = j. So for every

i=1, ..., m i=3j, wg 0 w5 is a subspace of dimension at most qj'l’
m

The set, v {mi n uj}. cannot contain the qj dimensional set ”j since each
i=1
i=j§




R~ _ECRAA

S —

set in the union is at most (qj-l) dimensional. Thus there exists £*,
such that S' € “j and s‘ ¢ wy foranyi=1, ..., m, i2j,

Fix 0 > 0. We will consider the sequence of parameter points (k§*, o),
k=1,2, ... . Note that kg* € mj for every k since mj is a subspace.
Let 5{ denote the projection of 5‘ on w,. Then the projection of gs' on
w, is kg} and "k;f—kg;ﬂz = kzﬂg'-giuz + = as k + « since "5’-5;“2 >0
fori=1, ..., m i=j,

For i =1, ..., m, let R, = {x: [1E-8, 1%/ 1x-8l1% > 2}, At (g, o
[(K-J)/(J-qi)]ﬂg-é."2/"5-5"2 has a noncentral F distribution with J-q,
and K-J degrees of freedom and noncentrality parameter 6k,i = X% “5"5{”2/02.

Fori=1, ..., m, 1=}, Gk'i-»uask-ro. Sofori=1 ..., m i=}j,

(2.8) (Ri) +1ask+w,

Pks',o

On the other hand [(K-J)/(J-q;)] I §-§jllzl lx-£11? has a central F distri-

bution with J-qj and K-J degrees of freedom. Furthermore,

c; s (J'qj)Fa,J-qj,K-J/(K'J)' Thus

(2.9) (Rj) =a foreveryk=1, 2, ....

Pks',o

Using (2.8) and (2.9) we obtain

m
P . *) =
18 Prge, o (M) > ) = 1in Pkg'.o[ifl"i]

m
= 1im|l - P [ u Rc]
k-n[ k€0 1 i]

m
21-1m § P

(rS)
koo in] kE*, 071
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m
=1-(l-a) - 1im } P (RS
P 121 kg*,0md
izj
=sa-0=2a.
Since (kE*, o) € ej c eo for every k,
(2.10) seup Pz.o("'(i‘) > c;) 2 '1:;: Pks',a(”(p > c;) 2 a.

0

Combining (2.7) and (2.10) yields (2.6). ||

We believe that in most applications all of the wss i=1, ..., m,
will have the same dimension q, in which case Cy ° (J'q)Fa,J-q,K-J/(K'J)‘
This is the case for all the examples we discuss in Section 3. But if
the dimensions of some of the wy differ, there is a modification of the
LRT which is also a size a test and has higher power than the LRT. This
test is described in Theorem 2; it is the LRT if all the Wy have the same

dimension.

Theorem 2. Let F, = [(K-J)/(J-qi)]||§-§i||2/||5-§||2. i=1, ..., m. The

test A** which rejects H, if and only if Fi > Fc.J-qi.K-J for every

i=1, ..., mis a size a test. The test A** has a power which is greater

than or equal to the power of the LRT for every (E, o) e 6.

Proof. The proof that A** is a size a test is almost identical to the
proof given in Theorem 1 that A* is a size a test. In this case any Wy,
i=1, ..., m, can play the special role played by mj in the second half

of Theorenm 1.
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The (g2 A > g} < G5t Fy>Fq g g

K-J° i=1, ..., m}. That is,
the rejection region for the LRT is a subset of the rejection region for
A**  Thus the power of A** is greater than or equal to the power of the

LRT. ||

Unless all of the quantities (J-qi)F /(K-J), i=1, ..., m,

a,J-qi,K-J
are equal, the rejection region for the LRT is a proper subset of the
rejection region for A** and the power for the LRT is strictly smaller
than the power of A** for every parameter in Hl' This provides an example,
like that of C. Stein (see Bickel and Doksum, 1977, p. 239), of a LRT

whose power is everywhere dominated by the power of another test.

The test which rejects H i E e wg if Fi > F

o a,J-qi,K-J is a size a

test of Ho The test of Ho in Theorem 2 rejects Ho if and only if for

il
each i the test based on Fi Tejects HOi' Tests of this form have been
called intersection-union tests by Gleser (1973); they have also been

discussed by Berger (1982).

3. Hypotheses Consisting of Linear Subspaces.

In the remaining sections, we discuss some specific problems which
fall into the general framework described in Section 2. These problems
involve hypotheses about the spacings between normal means. The ecological
problem which motivated our interest in these hypotheses was described
in Section 1.

We will consider the following special case of the model presented

in Section 2. Let xijk' i=1, ..., I, j§=1, ..., J,, k=1, ...,

i’ K3
denote K = 2 xij independent normal observations. The mean of xijk is
i,}
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"ij and all the xijk have a common variance of oz. Let

L e P A T “IJI)' and

E=(u,1s 5 «oc, 0 H,,12 ey dvw )  wnere l is a
£= Oplg o ooe Mg d lel' 2y o My L
vector of b ones. In the formulation of Section 2 we would consider

Eewc RK. Since here there is a one to one correspondence between u

and §, we may equivalently consider u € RJ where J = X Ji' We now consider
i

the subspaces Wy i=1, ..., m, as subspaces in RJ.
We will be concerned with permutations of ("il’ vees Wiy ) for each
i

i=1, ..., I. Let ¥ = (u, §17 o0 uiJ )” so that y = (ul, cees ui)'

A map n: RJ RJ is called a subpermutatlon if n(u) = (n (ul), cees T (ul))
I

where 7, (uy.) is a permutation of u., i =1, ..., I. There are I J;! sub-
it ~i i=1 i
permutations. A set Ac KJ is called subpermutation invariant if u ¢ A

implies "(E) e A for every subpermutation x. A set B is called a subpermu-
tation of a set A if B is the image of A under some subpermutation w. It
is easily verified that if A is a subspace then any subpermutation of A
is also a subspace.

The following theorem may be used to identify hypotheses which are
unions of subspaces. We shall use this theorem to show that the ordered
mean hypotheses in Section 1 are unions of subspaces and hence are testable

using the LRT of Section 2.

Theoren 3. Let N be a subpermutation invariant subset of RJ. Let H

denote a (J-q) x J matrix of rank J-q. Let N = {u ¢ Lo Hu = 0}, Let
Osfye®iu su,s . su;,i%1, ..., ). IENAO=u 0O

i
n ) ¢
and Nc w, then w, = v w, wvherems= It J,!, w, is the q dimensional sub-

space N, and Woy svep W aTE the subpermutations of N. Thus w, is the

union of q dimensional subspaces.
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m
Proof. Suppose u € U W, . Then u = n(p®*) for some u* € N and some sub-
- — ~ i=l ~ ~ -~

permutation v. Since N c Yy and wg is subpermutation invariant,
m
. - - c .
u = u(g ) € g Thus U wg €y
i=1

Now suppose y € w,. Let y* be a subpermutation of y such that

“31 € .0 S u;Ji, i=1, ..., I. By definition, E* € 0. Also, u* € e
since wy is subpermutation invariant, Thus, u* € Wy n0O=NnOcN,
n
Since p is a subpermutation of u* € N, p ¢ wg for some i. Thus wy € Y w,.
~ ~ ~ i:l b

Finally, since N = 0y is a q dimensional subspace of RJ, each of
the subpermutations of N, Wop sevs oo is also a q dimensional subspace

m
of R, |]

The subspaces w,, ..., w defined in Theorem 3 will not be distinc:.

1°
As will be seen in the following examples, the number of distinct sub-
spaces will be much smaller than m (at most m/2, in fact). Recognizing

this fact results in a saving of effort in the computation of the test
statistic A* for which the minimum needs to be taken onliy over distinct sub-
spaces. Taking the minimum over all m subspaces in Theorem 3 will, of
course, give the same value of A*, It would just be inefficient since

mary of the subspaces are equal.

We now consider the four hypotheses about the spacings betwsen normal

means discussed in Section 1.

Example 1. (Symmetric Spacings). For this example, I = 1, so we will

dcnote the means by u,, ..., 1, and the ordered means by v .., < «o. S U pe -
1 (ll \J)

J
By the "symmetric spacings hypothesis' we mean

Ao sl SEEadl e
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(3.1) Byt gy - ugsy = Bge1-j) “Begyr I = L eees [@-D/2)
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We shall use Theorem 3 to verify that H; is the union of subspaces. Let

H be a [(J-1)/2] x J matrix such that Hy = Q is equivalent to the conditions
llj,,l - Uj = llJ,l_j - “J.j: =1, «eu, [(J-l)/Z]. Ifll' € O then llj = “(5)1

j = ssey J, Hy = i i . - 3y = sy - v 2%\ 9
j=1, J, whence Hu = 0 is equivalent to "(]01) u(J) "(Jfl-]) u(d_”
j=1, ..., [(3-1)/2]). That is, NnO= wy N 0 as required by Theorem 3.

Now, to verify that N c wg- Let u € N, that is, Hu= 0. Let p* = (ule)/z.

For amy § = 1, ..., [Q-10/2], uy - w* = up - w* ¢ P} G pom) = we -y
j-1 .

. zisl (Myep-i¥i) = ¥* - Y e1-j° So, each pair, U and Uje1-j0 is sym-

- metrically placed about u*. (If J is odd, [(J-1)/2] + 1 = J - [(J-1)/2] and

¥[@-1)/2]¢1 = YI-[@3-1)72] = W) I up = upgy and ug = uig,,, then

Mpatr T V@e1-3) B Maees T Vgt TS Hggen T vG) T s T W T ()
= uggs T Ty )t gy C ¥(ej)- Therefore, y € ¢). Hence
Ncuoaanuiredbymeore-!o. By Theorem 3, the symmetric spacings
hypothesis is the union of subspaces of dimension J - [(J-1)/2] and A* can
be used to te:* I-I'(l)

This examples gives a good illustration of the fact that the m subspaces
defined in Theorem 3 are not all distinct. Let J = 4. In this example,

m = 4] = 24 but actually H‘l) consists of only 3 distinct subspaces. The H
defined in the previous paragraph can be written as H = (1, -1, -1, 1).

These eight permutations of N = {l'.: Hy = 0} all equal K itself: (1, =. 3, iij,
(1, 3, 2,4), 4,2, 3, 1), (4, 3, 2, 1), (2,1, 4, 3), (2, 4,1, 3),

(3, 1, 4, 2), (3, 4, 1, 2). These eight permutations of N all yield the
subspace defined by (1, -1, 1, -Du=0: (1, 24,3, Q, 3,4, 2),

4, 2,1, 3), (4,3,1,2), (2,1, 3,4), (2, 4,3, 1), (3, 1, 2, 9),

£ DU C SR U P S U ————— B o D mh Ta i e e e eiees T i S Corkeee L esitn s it e 1 W e s v-.l
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(3, 4, 2, 1). These eight permutations of N all yield the subspace defined
by 1, 1, -1, -1)u=0: (1, 4, 2, 3), (1, 4, 3, 2), (4,1, 2, 3), (4,1, 3, 2),
2,3,1,4), (2,3,4,1), (3,2,1, 4), (3, 2, 4, 1).

Example 2. (Symmetric Spacings with Specified Ratios). Again I = 1 so
the notation of Example 1 is used. Now the hypothesis of interest is a

subhypothesis of Hy, namely

(3.2) H(z): U(j+1) - U(j) = cj(u(Z)'U(l))s i=2, ..., J-1

where Cys e+e» €3 4 aTE specified positive constants with cj = °J-j’

j=2, ..., J=2, and cy.1 = 1. The restrictions on the cj imply that the
symmetric spacings are equal as in Hl. Hg can be used to test whether the
means are spaced like the expected values of order statistics from some
symmetric distribution. For example, if cj =1, j=2, ..., J-1, the distri-
bution is the uniform. If J = S, c, =Cy= .74111 and Cq ® 1, the distri-
bution is the normal. Theorem 3 can be used to verify that Hg, which is

subpermutation invariant, is the union of subspaces. Let Hbe a (J-2) x J

matrix such that Hy = 0 is equivalent to the conditions Mje1 ™ W5 = cj(uz-ul),
j=2, ..., J-1. Arguing as in Example 1 it is easy to verify that

NnOs wp N 0. To verify that N ¢ Y let J N, that is, ﬂg =0. If

¥y S ¥y then Up S Uy € o0 Sy since cj >0,j§j=1, ..., J-1. Thus
peNnO= wy N Oc Wy 1f ¥p Z Uy, then My 2 Uy 2 ... 2 g For cny

j = 2’ LY J‘l, u(j‘l) - u(j) 144 uJ-j - uJ*l-j = -CJ-j(uz-ul) = cJ-j(uJ-l-u\_T)
= cj(“J-l'"J) = cj(“(Z)'"(l))' The second, third and fourth equalities wr::
true since Hg =0, cj.1 ® 1, and cj = CJ-j‘ Thus B € wye By Theorem 3,

wy is the union of 2-dimensional subspaces and A* can be used to test Hg.
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Example 3. (Equal Spacings in Two Sets of Means). In this example there

are two sets of means of interest, I =2 and J, = J, = J° = J/2, We are

1 2
interested in testing the hypothesis that the spacings in the first set,
Uyps -ces Hyg-s are equal to the spacings in the second set, Hpps sees Mpgae

That is, we wish to test

3 : -
-3 ot viggeny “ M) T Paqgen) T M2y I b e ITL

To verify that Hg, which is subpermutation invariant, is the union of sub-
spaces, let H be a (J°-1) x J matrix such that Hy = 0 is equivalent to tiie

conditions ul,j#l - "lj = u2.j+1 - "25’ j=1, ..., J°-1. As in Example 1,

it is easily verified that Nn Q0 = mo n 0. To verify that N c w,, let L e N

Forany j=1, ...,
= ulj + (u21°"11)' Thus the set of means, Ygpe cees Hpges is a translation
of the set of mcans, Upgs sees Myges the amount of translation being (u21
Thus the spacings among Haps +e+s Uyj., are all equal to the spacings among
Bips cees Wpge and p € woe By Theorem 3, Wy is the union of
subspaces of dimension J-J“+1 = J/2+1 and A* can be used o test Hg.
This argument can be easily extended to the situation in which one
wishes to test for equal spacings in I (I > 2) sets of means. In this cuuc
H is an (I~1)(J°-1) x J matrix and the subspaces are of dimension

J-(1I-1)(J°-1) =1 +J° -1=1¢J/1 -1.

Example 4. (Equal Spacings in Two Sets of Means with Specified Ratios).
For this example, the notation is the same as in Example 3. We combine

the ideas in Examples 2 and 3 to consider testing

o M1G:D) 7M@) TY2qen T2y 7o 3T
(3.4) HC: >

T I I L B L To et e O L A R

T Vay T b (2, re17M2g) * ¥z = 1 Gy, re17¥1e) * M

-¥;.).
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where the c:j satisfy the same conditions as in Example 2. This null
hypothesis is also subpermutation invariant. If we let w. denote the
subspaces in Example 2 (now considered as subspaces of ' with

Uaps ecer Upge unrestricted) and let ng denote the subspaces in Example 3,

we see that for Hg, wy = (1] mr) n (v ns) = U ("’r n ns). But for every r
T 3 r,s

and s, w, N ng is a linear subspace of dimension 3. (The subspace W,

involves J°-2 restrictions and ng involves an additional J”-1 restricticas.

SN LT T
N L e e

This results in w, 0 ng having dimension 3.) Thus A* can be used to test

4
Ho.

4, Computation of the Test Statistic.

g As in standard linear models theory, the LRT statistic A* can be
! expressed as a product of matrices. This will simplify the computation
of A*. Furthermore, for the hypotheses described in Section 3, A* can be

computed without any minimization. These points will be discussed in this

section.

Let the J dimensional subspace w be defined as w = {5: [ g, Be KJ}
where W is a known KxJ design matrix. Let the subspaces vy be defined by
w, = {g: € = W8, Hig = 0} where H, is a known (J-q;)*J matrix of rank
J-q;, i =1, ..., m. Let 8= (w‘W)'IW‘_).g. Then analogous to standard

linear models theory we can write

SSH

(4.1 AT = 'S'SRQ
where

-~ Aenpe » -1, ” -1 a
(4.2) SSHo = min g Hi(Hi(W W) rii) Hig

J<iam
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and
(4.3) SSR = (X-W8) “(X-W8).

Expression (4.2) is true since the numerator of A* in (2.5) is the minimum
of the sums of squares associated with each of the hypotheses HOi: £eu.
By standard linear models theory these sums of squares are the expressions
given in (4.2).
For the examples considered in Section 3, the minimm in (4.2) does
not need to be computed. It is possible to determine which sum of squares
will be the minimum by examining the order of the sample means, as is shown
below. Thus only one sum of squares needs to be computed for these models.
For the remainder of this section, assume the model defined in Secticn 3.
For thi:.nodel B=X=(%] ..., X)) where . = X,,, ..., RiJi)‘ and
ii 5 ° zk:i xijklxi 3 Let H, the matrix from Theorem 3, be partitioned as
H= (C1 S oees o CI) where Ci is a (J-q)xJi matrix with columns Si10 oo giJi,

i=1, ..., I. Fori=1l, ..., I, suppose ni(l), cens ni(Ji) is a permu-

tation of 1, ..., J; such that Xi"i(n <... % ii'i“i). Define a (J-q)xJ
matrix H* by
(4.4) H® = (Ci IR Ci)

where C; is a (J-q)xJi matrix with columns gh. ceny gg_’i and Q;j o

ir “(G?
Then the numerator of A*, SSHO. is given in Theorem 4.

Theorem 4. If H, N, O, and Wy satisfy the conditions of Theorem 3 and H*
is defined by (4.4) then

(4.5) SSH, = §H*~(H* (W) "THe ) TheR,

..
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Thus the matrix H* can be constructed by permuting the columms of H
in a way dictated by the order of the sample means. Then SSH,, can be
computed directly because H* is the particular Hi vwhich mininizes the sum

of squares in (4.2). The proof of Theorem 4 uses the following two lemmas.

Leema 1. Suppose H, N, O and @ satisfy the conditions of Theorem 3 and
H* is defined by (4.4). Let N* = {2 € R": H*u = 0}. Let
S{Heﬂ', u"iu) .ee su. i(J ) i=1, ..., I}. Then N*Cuo

andN'nO =

onO

Proof. For any u ¢ K, let x(y) = (x;(u))s -..p %7 (uy))° where

") = Gypenye ooor Viaga))e 1 S5y 7 (Gg4p0 coee C3505.q)) 7 Them

foranyuell"andlsrs.!-q,ther coordimteofl-l'l(u) is

Xi-l XJ‘I ijriin ;) and the r'® coordinate of H'u is

{1=1 ZJSI ijr¥ z1-1 Z,-1 s -1(j) Zisl Z;-l Cijr¥in(g)- ThUS
Ht(g_) = H*y for every B e RJ.

Ifg eN*', O = H.!.'. = H‘l(y_). Thus t(g) €e Nc Wg* Since < is sub-
permutation invarient, ¥ € v, Thus N* c wye and hence N* n 0" c wy 0 o".
If ue ©y 0 0', then x(u) ¢ 0. Furthermore ¥(y) ¢ %) since g is
subpermatation invariant. Thus t(g) eN. So Q= Ht(g) = H*y and, hence,

§ € N*, musgeu'no',andhenccuono'cN'nO'. I

Lemea 2. Suppose xi'i(l) € oo S Ri'ui) for i =1, ..., I. Then for any

pe®,

. 1% % 1 2
(3.€) & j£l iy By ) 2 & oy T Gagmiy)

ol & * .
vhere ,* is a si.persutation of y satisfying f Ne ) T e s u;'_'l("i)

fC$'i‘.A- esey I-
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o1

Proof. Let g(x » B ) 2 - Z l( (xi "i = G(X.-u.). It is easily shown
j=1 j i ~i

(Marshall and Olkin, 1979, p. 57) that G is Schur-concave. It follows by
Lemma 2.2 of Hollander, Proschan, and Sethuraman (1977) that g is decreasing
in transposition and, hence,
J
2 2
2 K U-uiJ Z Ki ij-uﬁ) .
J=l
Inequality (4.6) follows since the above inequality holds for each

i=1, ..., I. ]|

Proof of 'l‘heorem 4. Let N* and O" be as in Lemma 1 and let

gX, u) = X Z Ki )2. The numerator of A*(X) is

SSHy = inf g(R, p)
Kewg

< inf g(X, ¥) (since N* ¢ w, by Lemma 1)
UeN* 0

4.7

s inf _ g(X, u) (since wy n 0" c N* by Lemma 1)
gemonO

= inf g(X, ),
Rewg

the last cquality being true by Lemma 2 since wo is subpermutation invarisst.
The second and last expression in (4.7) are equal so the incqualities are
equalities. But by standard lincar models thcory, the exnressicen involving

N* in (1.7) is t'c right hand side of (4.5). ||
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We will now compute a small example using Theorem 4. Suppose we wish
to test the symmetric spacings hypothesis of Example 1 with J = 3 popu-
lations. So H = (1, -2, 1) can be used. Suppose n = 4 with two observations

on population 2, so

[1 0 o)
010
010

0 0 1

Suppose the observed mean vector is X = (1, 10, 4)°. Then H* = (1, 1, -2).
Equation (4.5) yields SSH0 = 18/11. The maximum 1ikelihood estimate of p
obtained as the projection onto N* is y = (5/11, 107/11, 56/11). The sums
of squares corresponding to the projections onto the other two subspaces
in Wy those defined by Hu = 0 and (-2, 1, 1)y = 0, are 225/4 and 288/11.

Clearly SSH0 is the minirum of the three sums of squares.
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